eksakta
4 posters
cafepojok :: Cafe Pojok Community :: Hobby :: Discussion :: Sains & teknologi
Halaman 1 dari 1
eksakta
pembuktian teorema pythagoras
akan dibuktikan
=============
a^2+b^2=(c+d)^2
=============
(c+d)/b=b/c
c+d=b^2/c.........1)
e/a=c/b
e=ac/b............2)
a/d=b/e
e=bd/a............3)
dr pers 2&3
ac/b=bd/a
a^2c=b^2d
a^2c=b^2((c+d)-c)
a^2c=b^2(c+d)-b^2c
a^2c+b^2c=b^2(c+d)
a^2+b^2=(b^2/c)(c+d)
a^2+b^2=(c+d)(c+d).......lihat pers 1
finally
================
a^2+b^2=(c+d)^2
================
akan dibuktikan
=============
a^2+b^2=(c+d)^2
=============
(c+d)/b=b/c
c+d=b^2/c.........1)
e/a=c/b
e=ac/b............2)
a/d=b/e
e=bd/a............3)
dr pers 2&3
ac/b=bd/a
a^2c=b^2d
a^2c=b^2((c+d)-c)
a^2c=b^2(c+d)-b^2c
a^2c+b^2c=b^2(c+d)
a^2+b^2=(b^2/c)(c+d)
a^2+b^2=(c+d)(c+d).......lihat pers 1
finally
================
a^2+b^2=(c+d)^2
================
dead_soul- Capo mania
-
Jumlah posting : 60
Age : 37
Lokasi : kota proxxxxxxxr
Status : Single aja ah
Hobby : merenung
Registration date : 01.05.07
Statistik
Point:
(0/0)
Warning:
(0/0)
Thank:
(0/0)
triple phytagoras,tahukah kamu?
tahukah kamu?
x,y, dan z merupakan triple phytagoras jika
==========
x=a^2-b^2
y=2ab
z=a^2+b^2 (z adalah hipotenusa)
==========
dengan a,b bilangan real
x,y, dan z merupakan triple phytagoras jika
==========
x=a^2-b^2
y=2ab
z=a^2+b^2 (z adalah hipotenusa)
==========
dengan a,b bilangan real
dead_soul- Capo mania
-
Jumlah posting : 60
Age : 37
Lokasi : kota proxxxxxxxr
Status : Single aja ah
Hobby : merenung
Registration date : 01.05.07
Statistik
Point:
(0/0)
Warning:
(0/0)
Thank:
(0/0)
indahnya matematika
1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321
1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111
1234567 x 9 + 8 = 11111111
12345678 x 9 + 9 = 111111111
123456789 x 9 +10 = 1111111111
9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888
9876543 x 9 + 1 = 88888888
98765432 x 9 + 0 = 888888888
1 x 1 = 1
11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321
111111 x 111111 = 12345654321
1111111 x 1111111 = 1234567654321
11111111 x 11111111 = 123456787654321
111111111 x 111111111 = 12345678987654321
diambil dari http://underthesunz.blogspot.com/2007/01/amazing-math-patterns.html
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321
1 x 9 + 2 = 11
12 x 9 + 3 = 111
123 x 9 + 4 = 1111
1234 x 9 + 5 = 11111
12345 x 9 + 6 = 111111
123456 x 9 + 7 = 1111111
1234567 x 9 + 8 = 11111111
12345678 x 9 + 9 = 111111111
123456789 x 9 +10 = 1111111111
9 x 9 + 7 = 88
98 x 9 + 6 = 888
987 x 9 + 5 = 8888
9876 x 9 + 4 = 88888
98765 x 9 + 3 = 888888
987654 x 9 + 2 = 8888888
9876543 x 9 + 1 = 88888888
98765432 x 9 + 0 = 888888888
1 x 1 = 1
11 x 11 = 121
111 x 111 = 12321
1111 x 1111 = 1234321
11111 x 11111 = 123454321
111111 x 111111 = 12345654321
1111111 x 1111111 = 1234567654321
11111111 x 11111111 = 123456787654321
111111111 x 111111111 = 12345678987654321
diambil dari http://underthesunz.blogspot.com/2007/01/amazing-math-patterns.html
free_vose- Newbie
- Jumlah posting : 2
Registration date : 05.05.07
Re: eksakta
ada yg bisa logaritma gak???
moenk_meong- Capo mania
-
Jumlah posting : 45
Age : 31
Lokasi : denpasar, gatsu barat
Status : jomblo 4ever
Hobby : baca, standart aja...
Registration date : 07.08.07
Re: eksakta
wuihhh...
langit_langit7- .
-
Jumlah posting : 374
Lokasi : jakarta raya
Hobby : ngelurusin jari2 dikibod, wakakak..
Registration date : 06.05.07
Statistik
Point:
(30/100)
Warning:
(0/0)
Thank:
(0/0)
cafepojok :: Cafe Pojok Community :: Hobby :: Discussion :: Sains & teknologi
Halaman 1 dari 1
Permissions in this forum:
Anda tidak dapat menjawab topik